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ABSTRACT
Malicious activities on the Internet continue to grow in volume

and damage, posing a serious risk to society. Malware with remote

control capabilities is considered one of the most threatening mali-

cious activities, as it can enable arbitrary types of cyber-attacks. As

a countermeasure, many malware detection methods are proposed

to identify malicious behaviours based on traffic characteristics.

However, the emerging encryption and evasion techniques pose

substantial barriers to the full exploitation of network information.

This significantly impairs the effectiveness of existing malware de-

tection methods relying on a singular type of characteristics. In this

paper, we propose ST-Graph to resolve this issue. In addition to tra-

ditional stream attributes, ST-Graph explores spatial and temporal

characteristics of network behaviours based on a graph represen-

tation learning algorithm and integrates all available information

to boost the detection decision. To illustrate the effectiveness of

ST-Graph, we evaluate it on two datasets. Experimental results

demonstrate that ST-Graph outperforms state-of-the-art malware

detection systems and also shows good performance in efficiency,

generalizability, and robustness. Specifically, it achieves over 99%

precision and recall, and its False Positive Rate is even two orders

of magnitude lower than (nearly 0.02 times) that of baseline mod-

els. Meanwhile, the deployment of ST-Graph in two real network

scenarios for around one year shows an outstanding efficiency

with only 160 seconds time cost for 5-minute traffic in 1.7 Gbps

bandwidth.
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1 INTRODUCTION
Malware refers to intrusive software programs developed by cyber-

criminals withmalicious intentions such as stealing data, corrupting

computers, bringing down servers, and penetrating networks. The

most damaging malware are those with remote control capabil-

ities, which give attackers administrative control of the victim’s

computer to enable arbitrary types of cyber-attacks. For example,

NOPEN used in a massive breach of top-secret data in 2017 has

such remote control capabilities [7]. The infection pattern of this

type of malware is shown in Figure 1, where the infected host com-

municates with the control server to perform further malicious acts.

Due to the highly concealed and high-risk nature, the detection

of malware has received considerable critical attention from both

academia [28, 69, 71] and industry [8, 9, 13].

Real-world malware traffic detection requires efficient detection

over complex network traffic data with high accuracy. However,

the emergence of encryption strategies and various evasion tech-

nologies of adversaries poses huge barriers to effective malware

traffic detection. More specifically, adversaries employ encryption

protocols (i.e. TLS protocol [52]) in the process of malware com-

munications to hide suspicious information. According to [18], in

2021, more than 46% of malware have encrypted their communica-

tions. The encryption on most traffic greatly curtails the accessible

information (e.g., URL and HTTP headers in payload, ) that indi-

cate malicious network behaviour. This impairs the accuracy and

consistency of traditional network-based malware detection, such

as Deep Packet Inspection (DPI) [47, 54].

Many previous works have made efforts to resolve the challenges

of encryption. For example, to enlarge the set of indicative informa-

tion, [3, 19] summarise the fine-grained features of TLS traffic and

use machine learning methods to identify encrypted traffic gener-

ated by known malicious samples. Further, [37, 42] introduce deep

learning methods to reduce the dependence on features and human

experience. However, such detection methods based on features of

singular streams cannot be generalized to unknown samples and

may induce a large number of false positives that cannot be inter-

preted. To overcome such issues, another trend of methods [34, 35]

attempt to reveal the essential characteristics of malware behaviour

through the accessing relations between hosts and domains. How-

ever, adopting such methods in the real-world network scenario is

not trivial due to efficiency concerns. More seriously, adversaries

have developed various evasion techniques by perturbing stream

features, which further reduces the amount of usable information

https://doi.org/10.1145/3545948.3545983
https://doi.org/10.1145/3545948.3545983
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Figure 1: Infection pattern of remote control malware.

for malware identification. So far, the issue of lacking representative

information for encrypted malware detection has not been well re-

solved. Previous works only use a single type of characteristics such

as stream features or context information while the information

loss and compression still exist.

In this paper, we propose ST-Graph, a multi-stream analysis

framework that explores multiple features from spatial and tempo-

ral perspectives and integrates all available information for compre-

hensive malware traffic detection under encryption scenarios. More

specifically, we design an attribute heterogeneous graph oriented

to spatio-temporal traffic behaviour, which effectively captures the

characteristics of associations between nodes in a large-scale net-

work. Equipped with a graph representation learning method, our

method extends the scope of information that can be utilized for

recognizing encrypted malicious traffic, which boosts the detection

to achieve higher accuracy and robustness. In the meantime, we

carefully design our graph representation learning algorithm on

the basis of random walk [49], which learns spatial and tempo-

ral features for network traffic with high efficiency. The learned

host representations aggregate information from behavioural se-

quences in the network, which effectively highlights the differences

in traffic between compromised hosts and benign samples with

little information loss.

Our main contributions are summarised as follows:

• We propose ST-Graph, a real-time malicious traffic detection

framework under an encryption scenario. By exploring and inte-

grating multiple features, ST-Graph effectively reveals malicious

behaviours within an encrypted network, which enables low false

alarm rate detection.

•We design a heterogeneous attribute graph for encrypted traffic

and propose a novel embedding method, namely interval-inclined

random walk, for exploring and incorporating spatial and temporal

characteristics of the traffic data.

• We evaluate our detection system in several real network scenar-

ios for up to a year and observe good results. Compared to other

works, our detection model results in higher accuracy (nearly 10

times that of baselines), and significantly lower false positives with

a tolerable time cost.

• By real-world deployment, our detection system finds some mali-

cious cases that cannot be discovered by other systems and reveals

some emerging malicious traffic types.

2 BACKGROUND
In this section, we briefly overview the available information for

malicious traffic detection under encryption and summarise the

knowledge about graph representation learning.

Information inTLShandshake.Transport Layer Security (TLS) [52]
is utilized to assure confidentiality and integrity between two com-

munication entities. For example, HTTPS is the plain text HTTP

protocol over TLS. In general, a TLS connection negotiates keys

via a TLS handshake and then uses secure symmetric to encrypt

communication payloads. Encryption of TLS could prevent any

third parties from accessing plain communication payloads, which

attracts an increasing number of applications to deploy TLS. As a

coin has two sides, malicious adversaries also deploy TLS to encrypt

their connections to evade detection by DPI systems [47, 54]. How-

ever, TLS handshake remains in plain-text in order to exchange the

information necessary for encryption. During a TLS handshake,

two communicating parties authenticate with each other, negoti-

ate encryption algorithms, exchange encryption keys and finally

agree on the encryption process based on previously exchanged

information. More specifically, the client initially sends a Clien-

tHello message, providing a list of cipher suites and a set of TLS

extensions. The cipher suites are a set of cryptographic algorithms

required by TLS. The extensions are the features supported by the

TLS client, where the Server Name Indication (SNI) extension indi-

cates the hostname of the target server to which the client is trying

to connect. The server then responds with a ServerHello message,

containing the selected algorithm and identity information. As the

information exchanged during the handshake process is critical

to the subsequent encrypted communication, it also provides vital

information to detect malicious encrypted traffic [2].

Graph Representation Learning. Graph is a data structure for

representing complex networks and modelling abstract concepts

such as relations between entities. However, traditional graph

construction algorithms (e.g. adjacency matrices [53], adjacency

list [10]) and graph analysis algorithms (e.g. search algorithms [59])

have difficulty in solving the increasingly complex graph topology

and can incur huge space and time overheads. At the same time,

graph representation algorithms [24] allow for more flexible and

efficient analysis on large-scale graphs, with the goal of optimiz-

ing a set of vectors that numerically represent node information

as well as graph structure. Among such methods, graph embed-

ding [21] is a representative approach, which transforms nodes

on graphs into vectors. A graph could be approximated by several

node lists, which is similar to the word sequences in a piece of

text. Therefore, word2vec [39], a text embedding method, could be

adopted for graph embedding effectively [49]. First, a list of nodes

can be regarded as a “corpus” of a graph, which can be obtained by

random walks [16]. Based on the node list, the vectorized represen-

tations of nodes can be optimized using a skip-gram network [40],

by maximizing the likelihood probability of each node’s context.

In this paper, we extend this method to learn edge representations

from the prioritized graph topology constructed from the complex,

real-world network traffic data.

3 PROBLEM STATEMENT
Our goal is to detect infected hosts within an organization by ob-

serving host traffic behaviours. Generally, gateway refers to the

network boundary to distinguish between internal and external

networks, such as campus networks and enterprise networks. Due

to the gateway’s global perspective of the traffic through it, we posi-

tion our detection system, ST-Graph, at the gateway to monitor the
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Figure 2: Threat model of ST-Graph.

whole traffic, as shown in Figure 2. Specifically, ST-Graph listens

to encrypted network traffic generated by internal hosts accessing

external servers at the gateway and detects infected hosts with

suspicious communications in a real-time manner. In this work,

we only focus on the standardized TLS protocol encrypted traffic.

Since it’s the mainstream encryption protocol with the most usage

rate for malware, due to its ease of deployment. To be noticed, our

detection system only captures the traffic without manipulating

them and thus will not affect the benign forwarding traffic.

However, such detection demand poses huge challenges mainly

from two perspectives: 1) curtailed available information limits

the effectiveness of the detection, and 2) the highly comprehen-

sive network connections hinder the efficiency of the detection.

More specifically, the first concern results from recent encryption

and adversaries’ evasion technologies, which greatly curtail the

amount of information that can be utilized for detection. In en-

cryption scenarios, the invisibility of payloads of communication

prevents traditional detection methods, e.g. DPI methods [47, 54],

from making accurate predictions. More seriously, adversaries have

evolved several techniques to evade existing single-stream-based

detection methods [17, 61, 65]. In obfuscation-based evasion, adver-

saries change frequency of accesses from a host to command and

control (C&C) servers [26], which blurs the suspicious property

of the host to evade detection based on packet length and time

interval [3, 19, 45]. In disguising-based evasion, malware takes the

form of benign software connections, disguises that its traffic is

generated by benign software [17], visits benign third-party web-

sites initially as a front [68], or reduces the number of websites

visited [38] to avoid context-based detection [50, 73]. The suspi-

cious behaviours hide behind millions of legitimate requests, which

poses substantial barriers to effective detection and introduces a

high level of false positives [11, 17]. Therefore, encryption and eva-

sion behaviours prompt us to explore more available information

for effective detection.

As for the second concern, the detection over network inter-

actions confronts a large scale of network throughput, resulting

from the increasing number of network users and the complex

network connectivity. Meanwhile, the demand of exploring addi-

tional, multi-faceted features for effective detection also intensifies

the computational complexity. Therefore, we need to design new

detection technologies that can explore and process more network

features over comprehensive network interactions with tolerable

computational complexity.

4 SYSTEM OVERVIEW
In this paper, we propose ST-Graph, a multi-stream analysis frame-

work equipped with a novel graph embedding algorithm. In this

section, we illustrate the key observations of malware infections,

explain the design of the system, and describe the workflow of

ST-Graph.

4.1 Key Observations

Malicious level

Attack
Control
Server H1 H2 H3

Figure 3: Schematic representation of host connectivity in
a network environment with malware infections. Colour
of circle represents the maliciousness of the destination
server. For example, white circles represent normal desti-
nation servers, like www.google.com, grey circles represent
middle-malicious servers, like phishing websites, and black
circles represent malicious servers, like C&C servers.

Since remote control malware has the advantage of low attack

cost and the capability of widespread, it has been widely taken by

adversaries in more than half of malware attacks [30]. To detect

remote control malware, we first perform an empirical study to

condense the key features. Based on previous work that found that

some malware has similarities in attack targets and attack meth-

ods [29, 46, 57], we perform a manual analysis of remote control

malware from two aspects: code and generated traffic. First, we

randomly sample 30 malware as our ground truth and run them on

several operating systems under our control. Note that the entire

experiment environment is enclosed and will not affect any third

parties. From the code aspect, we reverse their code and analyse

the code logic and hard-coded content. We find that malware in the

same family prefers to share a similar software framework, which is

the root cause of the similar traffic behaviour. The reason for code

sharing and reuse, as we speculate, is likely to be saving costs. And

malware is generally not up to date and still accepts low version

TLS connections. Besides, developers of malware often use default

fixed parameters, especially the time interval. For example, we find

that some malware usually set the time interval to connect to the

control servers to 60 seconds.

Further, to explore the traffic behaviour, we try to decrypt the

traffic generated by ground truth malware. With the master key

extracted from controlled operating systems, we could analyse

the plain communication between malware and servers. The simi-

larity of code within the same family leads to a concentration of

behavioural characteristics in their traffic behaviour. Due to a clear,

joint attack purpose, i.e. remote control of the infected hosts, there

exists a relatively fixed traffic pattern in remote control attack. As

shown in Figure 1, the communication process can be summarised

into two main phases: the attack phase (solid lines) and the control
phase (dashed lines). Initially, the attack phase is to deliver malware

to victim’s machine by spoofing websites (grey circles) or exploiting

vulnerabilities to install malware, which can help adversaries gain

control of the host. For example, for H2 in Figure 3, the attacker

commits a fraudulent activity by sending phishing emails in the

attack phase and lures victim to click the embedded link, which

may cause the redirection from phishing website (grey circle) to

www.google.com
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Figure 4: Overview of ST-Graph.

malware download site (black circle). Afterwards, in the control

phase, infected hosts would connect to the control server of adver-

saries to receive and then execute instructions [46]. We find that

most malware prefers to connect to different destination servers in

different phases, which construct a connection order. We speculate

the reason may be to evade the detection. Interestingly, the forged

innocent network connectivity test of malware is common, which

is preparation before connecting to control servers, e.g., querying

the host’s public IPs or downloading servers’ certificates. For exam-

ple, in Figure 3, dashed lines connected to white circles represent

the network connectivity test behaviour. Specifically, the infected

hosts may actively connect to external servers, such as third-party

servers for network inspection.

Above, we summarise the two main phases of remote control

malware from code and traffic analysis, i.e., attack phase and control
phase. Besides, we find an exclusive observation, i.e., the forged

innocent network connection test, which gives us a unique per-

spective on detection. Our observations not only extend existing

understanding of malware behaviour but also deliver distinctive

findings. Below, we summarise the common characteristics of mal-

ware infections from the following aspects:

• Spatial Feature refers to the concentration property between hosts
and target servers, especially within families. As mentioned before,

due to framework reuse, some malware within the same family

exhibits high similarity, reflected by the destination servers they try

to connect with. For example in Figure 3, H2 and H3 are connected
to the same destination servers in the control phase.

• Temporal Feature of the connection. The connection order of a

host over a period of time can help us rebuild the infection process

of malware, which can clearly show the change with phase. Besides,

due to the setting of fixed parameters, communications between

infected hosts and control servers are regular, especially the packet

length and packet interval time [26].

4.2 System Design
To achieve effectiveness and efficiency, the key point of our de-

tection system, ST-Graph, is to retrieve as much information as

possible with tolerable computation complexity. According to the

observations of our empirical study (See §4.1), we summarise two

categories of general and distinguishable features. First, spatial
feature reflects the property of network connection relationships

for each host. In addition, temporal feature shows the side-channel
information of communications. These two kinds of features jointly

depict the network communication behaviour of hosts in a compre-

hensive way.

Based on the observed features, we design ST-Graph, which in-

corporates the spatial (i.e., accesses between hosts and servers) and

temporal (i.e., connection order and time-related information) char-

acteristics of hosts’ network behaviour into host representations

to boost the effectiveness of detection decisions. To achieve higher

efficiency, we improve the algorithm of graph representation by

only optimising edge representation with iterative updates, while

the optimal node representations are derived from closed-form so-

lutions. This significantly reduces the computational complexity of

graph representation learning.

4.3 Workflow
As shown in Figure 4, our detection system consists of three com-

ponents: data preprocessor, graph representor, and detector. Below

we elaborate on the functionality of each component.

Traffic Preprocessor. Raw traffic is usually captured as packets in

the Pcap format. In this original data format, many communication

details are presented in a fragmented manner, making it difficult

to be utilized for detection. Therefore, we construct a Traffic Pre-
processor to recover the complete communication while removing

the extra meta-information from the traffic data. To begin with, we

apply stream reassembly to recover the entire end-to-end commu-

nication. To do this, we extract a 5-tuple (i.e., <source IP, source

port, destination IP, destination port, protocol>) from each original

packet, and integrate the packets associated with the same 5-tuple

as a stream. Afterwards, we reserve the traffic of the TLS protocol

with a complete TLS Handshake and extract the key information

for each stream. More specifically, we extract the contents of the

TLS handshake in each reserved TLS stream, including the TLS ver-

sion and the supported cipher suites, and calculate some statistical

information such as the number of packets and the bytes within a

stream. Such statistical information extracted from the data stream

remains an important element of malware traffic detection and is

used later in the computation of the graph representation.

Graph Representor.We build a heterogeneous graph to represent

the end-to-end communications among hosts and servers by their

temporal and spatial features. Specifically, the temporal features are

the traffic characteristics we extract from the streams, which are

embedded in the stream representations; and the spatial features

are reflected by the graph structure. Based on this, we design a

node embedding algorithm to transfer the spatio-temporal features

into host representations, which reflect the similarity of the host’s

access behaviour. We will elaborate on this module in §5.

Detector. Given the embedding vector of each host that numeri-

cally quantifies the host’s behavioural characteristics, we apply a

machine learning approach to calculate the likelihood of the host

being infected. Considering the ability to resist overfitting [12]

and the better performance in comparative experiments (see Ap-

pendix A), we finally employ the random forest (RF) regression

algorithm [12] as our detector. It is an ensemble learning method

that makes predictions by averaging the output of multiple deci-

sion trees. With the predicted infection value of each host, the

detector outputs a list of suspicious hosts along with their access

information.

5 ST-GRAPH: SPATIO-TEMPORAL GRAPH
In this section, we present the design details of ST-Graph, elaborate

on the process of graph construction and the optimization of edge

representation, and explain how we propagate spatial and temporal

information in a lossless way to represent hosts for malware traffic
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detection. The key of the approach is to exploit the similarities in

the network behaviour of different applications. To do this, we first

build a heterogeneous graph to correlate all network connections

between hosts and servers. Based on the graph structure, we apply

Random Walk [16] to generate a list of corresponding connections

for each stream and use a probabilistic model to optimize the edge

representations. Each stream is represented by its edge representa-

tion and traffic characteristics. Finally, we represent each host by

its all accesses generated in a sequential order, which integrates

the traffic characteristics and network structure associated with

the host. Compared with Graph Neural Network-based methods

that train thousands of parameters [72], and Knowledge Graph

Embedding-based methods that jointly optimize the representation

of all nodes and edges [36, 66], ST-Graph learns edge embeddings

based on random-walk with a small number of iterations and op-

timizes host embeddings with a closed-form solution. This highly

reduces the computational complexity to meet the need for real-

time detection.

5.1 Graph Construction
Graph Topology. We design a host-server bipartite graph 𝐺 =

(𝐻,𝐷, 𝐸, 𝑆, 𝐼 ) to capture the interactions between internal hosts

and external nodes. We denote the internal hosts as a vertex set

𝐻 , each represented by its IP as the unique identifier; Similarly,

the external server destinations are represented by a vertex set 𝐷 ,

each initialized by the server’s domain name or its IP address. The

domain can be obtained from SNI in ClientHello, and the server’s

IP address is used as a substitute when the domain is not available.

We use an edge set 𝐸 = {𝑒 |𝑒 = (ℎ𝑒 , 𝑑𝑒 ), ℎ𝑒 ∈ 𝐻,𝑑𝑒 ∈ 𝐷} to denote

all connections (i.e., streams) between hosts and servers. If a host

ℎ has a TLS handshake with a server 𝑑 , then an edge 𝑒 = (ℎ,𝑑)
connecting these two nodes will be added to 𝐸. 𝐼 = {𝑖𝑒 |𝑒 ∈ 𝐸}
denotes the temporal feature of each edge, where 𝑖𝑒 represents the

order of 𝑒 connected by its host ℎ𝑒 . 𝑆 = {𝑠𝑒 |𝑒 ∈ 𝐸} denotes the
attributes extracted from the streams as described below.

Stream Attributes. The stream attributes 𝑆 characterize the fea-

tures of every single stream. To explore more detailed features, we

extend previous works [3, 55] with TLS handshake features such

as orders of cipher suits. Specifically, we exploit stream attributes

(details in Appendix E) from three aspects: 1) the TLS handshake

features extracted from internal hosts, 2) the domain name features

extracted from external nodes, and 3) the side channel statistics

features of the stream.

For the first type of attributes, we observe that malware and

C&C servers are not updated promptly, so they usually accept

lower TLS versions and maintain support capabilities for weak

encryption algorithms. The underlying reasons are that attackers

are relatively less concerned about whether communications will

be decrypted and that vulnerabilities in lower versions of operating

systems are easier to exploit. According to this observation, we

extract features from the TLS ClientHello message, including the

TLS version, the list of offered cipher suites and extensions as

TLS handshake features. Such features can provide information

about the encryption algorithm supported by the client. For the

second type of attributes, our feature extraction is mainly based

on the fact that many malicious domains are computed by Domain

Generation Algorithms (DGA). Hence, we extract features such

as the number, the character ratio, and the vowel or consonant

letter ratio for identification. We also extract domain name length

features to cope with lexicon-based DGA, which selects words from

proprietary dictionaries for combination to reduce randomness.

In addition, we include the side channel information as our third

type of attributes for they provide indirect signals to our detection.

Although the packet length and the arrival time do not provide

insight into the content of the connection, they can help to infer

network behaviour. For example, the large number of heartbeat

packets used to maintain a connection can result in small packets

per stream [3]. So we calculate some statistical information such

as the number, the length, or the time interval of packets sent and

received within a stream.

5.2 Edge Embedding
Edge embeddings are numerical representations of streams. In this

paper, we integrate two categories of features into edge embeddings:

1) stream attributes 𝑆 for preserving original traffic information and

2) spatio-temporal embeddings for reflecting comprehensive and

dynamic network behaviours.We consider the network interactions

as the spatial features generated from graph topology, while the

temporal features refer to the sequential order of the servers being

visited by the host through the stream. To integrate spatial and

temporal features, we propose an Interval-inclined RandomWalk 𝑅 :

𝑒 → 𝑟𝑒 that takes into account both network interactions and access

orders to generate Spatio-temporal embeddings. Our model extends

the traditional random walk method [49] which traverses the graph

along the edges and maximizes the similarity of all edges within

several traverses. The main reason for this design choice is that

other graph-based models for edge representation learning, such as

Knowledge Graph Embedding methods [36, 66] and Graph Neural

Networks [25, 63], suffer from high computational complexity and

cannot serve our demand for efficient, real-time detection. In this

paper, we incorporate the temporal feature, i.e., the access order,

into the context generating process proposed by node2vec [22],

where the randomwalk strategy balances the breadth-first sampling

(BFS) and depth-first sampling (DFS). In general, from a starting

edge 𝑜 , we perform random walks with at most 𝑃𝐿 steps for 𝑃𝑁
times to collect a set of edges N𝑜 . Further, we optimize the Spatio-

temporal embedding of 𝑜 by maximizing the similarity of edges in

N𝑜 . Below we elaborate on our augmented random-walk strategy,

which decides the edge to take for the next step based on previous

wanderings.

For an edge 𝑒 , we define its neighbours as a collection of edges

that share the same host or the server with 𝑒 , formally 𝐶𝑒 = {𝑢 :

(ℎ𝑢 , 𝑑𝑢 ) |𝑢 ∈ 𝐸,ℎ𝑒 = ℎ𝑢 ∨ 𝑑𝑒 = 𝑑𝑢 }. Let 𝑤 = [𝑤0,𝑤1, ...,𝑤𝑃𝐿 ] be
a certain random walk. We define the connection order distance 𝑑
between two edges 𝑢, 𝑣 as 𝑑 (𝑢, 𝑣) = |𝑖𝑢 − 𝑖𝑣 |, where 𝑖𝑒 is the order
of edge 𝑒 being connected by its host ℎ𝑒 (See §5.1). Assume the

random walker starts from edge 𝑜 , we define the probability of

selecting a certain edge 𝑥 ∈ 𝐶𝑜 from the neighbours of 𝑜 for the

next walk as

Pr(𝑤1 = 𝑥 |𝑤0 = 𝑜) =
1

𝑑 (𝑜,𝑥 )∑
𝑦∈𝐶𝑜

1

𝑑 (𝑦,𝑜 )
.

Here, our random walker inclines to select the edge having the

minimum connection order distance with the current walk as the

next step. By doing this, streams that are generated in a small time

interval are tended to be consecutive steps in the random walk.
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For the following walks, each selection is based on the two

previouswalks. Assume the last step is at edge𝑢 and the current step

takes edge 𝑣 , the walker selects the next step from 𝑣 ’s neighbours

𝑥 ∈ 𝐶𝑣 with

Pr(𝑤𝑖+1 = 𝑥 |𝑤𝑖 = 𝑣, 𝑤𝑖−1 = 𝑢) =
𝛼𝑢,𝑥 · 1

𝑑 (𝑣,𝑥 )∑
𝑡∈𝐶𝑣

𝛼𝑢,𝑡 · 1

𝑑 (𝑣,𝑡 )
,

where the value of 𝛼𝑢,𝑥 is determined by the relation between 𝑥

and 𝑢. When 𝑥 = 𝑢, 𝛼𝑢,𝑥 takes the value of
1

𝑝 ; when 𝑥 is one of the

neighbours of 𝑢, 𝛼𝑢,𝑥 is set as 1; otherwise 𝛼𝑢,𝑥 = 1

𝑞 . Here, 𝑝 and 𝑞

are hyper-parameters. When edge 𝑥 is overlapped with edge 𝑢, we

use a constant 𝑝 to control the probability of returning from 𝑣 to the

starting point 𝑢. Otherwise, if there are one or more edges between

edge 𝑥 and edge 𝑢, we apply a constant 𝑞 to control the probability

of 𝑣 going to a new node. If 𝑞 < 1, the walker tends to visit global

nodes (DFS); if 𝑞 > 1, the walker tends to visit local nodes (BFS),

which enhances the coverage of the surrounding neighbours.

According to this strategy, for each edge 𝑒 , we generate a net-
work neighbourhood N𝑒 by 𝑃𝑁 times of random walks. The edges

in N𝑒 are highly correlated with edge 𝑒 from both spatial and tem-

poral perspectives. Hence, to incorporate the spatial and temporal

features of the graph into edge embeddings, we set up a vector

𝑟𝑒 for each edge, and optimize the vector by the proximity within

its network neighbourhood N𝑒 . More specifically, we model the

plausibility that an edge 𝑛 is correlated with edge 𝑢 as

Pr(𝑛 |𝑢) = exp(𝑟𝑢 · 𝑟𝑛)∑
𝑣∈𝐸 exp(𝑟𝑢 · 𝑟𝑣)

. (1)

We assume the neighbourhood relation between different edge pairs

is independent, and further define the neighbourhood likelihood of

edge 𝑢 as
Pr(N𝑢 |𝑢) =

∏
𝑛∈N𝑢

Pr(𝑛 |𝑢) . (2)

We optimize the neighbourhood likelihood of all edges to pursuing

the global proximity:

max

𝑟𝑢

∏
𝑢∈𝐸

Pr(N𝑢 |𝑢)

= max

𝑟𝑢

∑︁
𝑢∈𝐸

∑︁
𝑛∈𝑁𝑢

log

exp(𝑟𝑢 · 𝑟𝑛)∑
𝑣∈𝐸 exp(𝑟𝑣 · 𝑟𝑢 )

= max

𝑟𝑢

∑︁
𝑢∈𝐸

−|N𝑢 | · log𝑍𝑢 +
∑︁

𝑛∈N𝑢

𝑟𝑢 · 𝑟𝑛


(3)

where 𝑍𝑢 =
∑

𝑣∈𝐸 exp(𝑟𝑣 · 𝑟𝑢 ) is a normalization factor.

We use negative sampling to obtain an approximation of 𝑍𝑢
and optimize the objective function (3) using a stochastic gradient

ascent algorithm to update the Spatio-temporal embeddings of

edges. Finally, we represent edge 𝑒 by concatenating its stream

feature 𝑠𝑒 and its spatio-temporal embedding 𝑟𝑒 : 𝑓𝑒 = 𝜙 ( [𝑠𝑒 | |𝑟𝑒 ]),
where 𝜙 (𝑥) = 𝑥

|𝑥 | is a normalization function.

5.3 Host Representation
To detect infected hosts through traffic behaviours, we propagate

the information of the streams associated with each host to nu-

merically represent the hosts. Formally, for host ℎ, we have its

representation 𝑔ℎ as 𝑔ℎ = Propagate({𝑟𝑒 |𝑒 ∈ 𝐸 ∧ ℎ𝑒 = ℎ}) to
represent the host’s sequential access behaviour in a short period.

Below we explain the details of the information propagation from

streams to hosts.

For a target host 𝑡 , assume𝑢 is a server being visited by 𝑡 through

the stream 𝑒 = (𝑡,𝑢). Among network traffics, each host may access

many public services (e.g., windows update service, etc.), some of

which are not informative for characterizing the host’s behaviour

while taking a large proportion of traffic data. Hence, we rank

the streams associated with the host according to the importance

of the server visited through the stream before the information

propagation. Such importance is with respect to 1) the frequency

of the server being visited by all hosts 𝐻 and 2) the order (𝑖𝑒 : 𝑒 ∈
𝐸,ℎ𝑒 = 𝑡 ∧ 𝑑𝑒 = 𝑢) of the host 𝑡 visiting the server 𝑢. Intuitively, if

a server 𝑢 is visited by most hosts, it is likely to be visited by the

target host 𝑡 , too. Also, if 𝑡 visits 𝑢 at a very early stage, then 𝑢 is an

important access destination of 𝑡 , compared with the other servers.

Hence, we define the importance of edge 𝑒 to its host 𝑡 as

𝜌 (𝑒) = | {𝑒′ |𝑒′ ∈ 𝐸 ∧ 𝑑𝑒′ = 𝑢 } |
𝑖𝑒 · |𝐸 | ,

where |{𝑒 ′}| is the number of edges ending at 𝑢, |𝐸 | is the total

number of edges, and 𝑖𝑒 is the order of edge 𝑒 being connected by 𝑡 .

Further, we model the correlation score between host 𝑡 and edge 𝑒

as a weighted sum over the importance of 𝑒 to 𝑡 and the similarity

between the host representation 𝑔𝑡 and edge embedding 𝑓𝑒 :

corr(𝑡, 𝑒) = 𝜆𝜌 (𝑒) + (1 − 𝜆) exp (𝑔𝑡 · 𝑓𝑒 )
𝑍

,

where 𝜆 is a scalar hyperparameter and 𝑍 =
∑
𝑖∈𝐸 exp (𝑔𝑡 · 𝑓𝑖 ) is a

normalization factor. Let L𝑡 = {𝑒 |𝑒 ∈ 𝐸 ∧ ℎ𝑒 = 𝑡} denote all edges
proceeding from host 𝑡 . The joint correlation score of all edges in

L𝑡 is defined as:

Corr(L𝑡 ) =
∏
𝑒∈L𝑡

corr(𝑡, 𝑒) =
∏
𝑒∈L𝑡

[
𝜆𝑝 (𝑒) + (1 − 𝜆) exp(𝑔𝑡 · 𝑓𝑒 )

𝑍

]
,

and its logarithmic form can be approximated by the first-order

Taylor Expansion as

log [Corr(L𝑡 ) ] =
∑︁
𝑒∈L𝑡

log

[
𝜆𝜌 (𝑒) + (1 − 𝜆) exp(𝑔𝑡 · 𝑓𝑒 )

𝑍

]
≈


∑︁
𝑒∈L𝑡

(
log (𝜆 [𝜌 (𝑒) + 𝜉 ]) + 𝜉

𝜌 (𝑒) + 𝜉

)
· 𝑓𝑒

 · 𝑔𝑡 ,
where 𝜉 = 1−𝜆

𝜆𝑍
is a constant. We restrict the host representation 𝑔𝑡

as a unit vector. Let 𝑀𝑡 =
∑
𝑒∈L𝑡

𝑓𝑒 ·
(
log (𝜆[𝜌 (𝑒) + 𝜉]) + 𝜉

𝜌 (𝑒)+𝜉

)
.

To maximize log[Corr(L𝑡 )], 𝑔𝑡 should be a vector of length 1 hav-

ing the same direction with𝑀𝑡 . Therefore, we have the optimized

host representation as 𝑔∗𝑡 =
𝑀𝑡

|𝑀𝑡 | .

6 EXPERIMENTAL EVALUATION
In this section, we present experimental evaluations of our detection

system. We evaluate ST-Graph on two tasks: malware detection and

malware family classification. The first task distinguishes hosts with
malicious network behaviour from benign ones, while the second

task further specifies the family of malware. A malware family is a

group of associated programs with similar attack techniques, some

of which have “code overlap” [15] to a large extent. Grouping them

as a family broadens the scope of a single piece of malware as it

alters over time while reserving distinct family traits.

6.1 Experimental Setup
Implementation.We present the tools used in each component

of our detection system (See §4.3). For traffic preprocessor, we em-

ploy TShark (version 3.2.5) [32] to parse the fragmented packets

and then recover the complete communication. To implement the

graph representor, we use NetworkX (version 2.5.1) [23] to build

the heterogeneous graph and initialize nodes with text represen-

tation by Gensim (version 4.1.2) [51]. Finally, we use scikit-learn
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(version 0.23.2) [48] for both singular value decomposition in host

representation and the classification algorithms.

Baselines. We compare our ST-Graph with two state-of-the-art

malicious traffic detection methods (ETA and FS-Net), which both

perform detection in stream-level detection. The computational

complexity of Graph Neural Network-based methods [36, 66] is

too heavy to meet efficient detection needs at all. Therefore, we

exclude these methods as our comparative methods. The details of

the baselines are as follows.

• ETA [2] adopts the random forest model to detect malware traf-

fic. Specifically, the ETA utilizes the stream features, including

TLS handshake metadata, DNS contextual streams linked to the en-

crypted stream, and the HTTP headers of HTTP contextual streams

from the same source IP address within a 5-minute window.

• FS-Net [37] is an end-to-end deep learning model, which takes the

multi-layer encoder-decoder structure to mine the potential sequen-

tial characteristics of streams. In summary, it learns representative

features from raw streams and then classifies them.

We set hyperparameters of baselines to either the values adopted

by their authors or default values. Specifically, for FS-Net, we set the

dimension of hidden state as 128, layer number as 2 and dimension

of length embedding as 16. For the other parameters involved, such

as the parameters in random forest, we apply the default settings

in scikit-learn (version 0.23.2).

Environment and Parameters. We conduct the methods on a

Supermicro server with two Intel Xeon E5-2690 CPUs (2× 14 cores),

Centos 7.9.2009, 345G memory. For hyper-parameters, we set the

dimension of the host vectors 𝐷ℎ as 256, the length of random walk

path 𝑃𝐿 as 100 and the number of paths per edge 𝑃𝑁 as 10. And

we set the parameter 𝑝 controlling the probability of returning as 1

and the parameter 𝑞 controlling the probability of exploring new

nodes as 2 for better coverage of the surrounding neighbours.

Metrics. We use the following metrics to evaluate the detection

performance: (i) precision, (ii) recall and (iii) false-positive rates

(FPR). (See Appendix B)

6.2 Dataset
We conduct experiments on one public dataset (CICInvesAndMal-

2019, as AndMal2019 [58]) and one dataset collected by ourselves

(EncMal2021). AndMal2019 dataset includes traffic and device logs

generated by 5065 benign and 426 malicious Android apps on real

smart devices. And the malicious apps can be divided into 39 fami-

lies. Our collected dataset EncMal2021 is constructed by capturing

the traffic generated by the example and the campus network traffic.

It contains 108,847 hosts with 5,202,093 streams, 4.5% of which are

marked as malicious, and the others are marked as benign. Below

we elaborate on the data collection process of EncMal2021.

Data Collection. EncMal2021 consists of malicious and benign

traffic data.

• Malicious Traffic: We use malware analysis sandboxes to col-

lect the data. The sandboxes, including Windows 7 and Windows

10 operating systems, allow users to submit malicious executable

examples and control the runtime based on the execution of the

executable files. Malicious samples come from malware analysis

website VirusTotal and large security companies we work with,

with millions of sample updates per day. Table1 shows the names

of malware families and the number of examples we sample from

Table 1: Malware Families

Family Name # Samples Family Name # Samples
Minerd 5717 Unwanted 1610

Cryxos 4652 Faceliker 1564

PhishingSite 3080 Trojandownloader 1528

Wacatac 2949 Brocoiner 1482

hidelink 2860 Sality 1046

Kryptik 2403 Zbot 1035

Redirector 2190 RelevantKnowledge 771

Generickdz 1974 Scrinject 756

Installcore 1807 Ramnit 719

Iframe 1731 Others 13237

each malware family. Each example runs for 5 minutes on average,

during which all generated traffic is recorded and saved. Since most

of the behaviours of the samples in the sandbox can be observed in

the first two minutes [31], we consider five minutes to be a suffi-

cient time interval to observe almost all valid behaviours. In total,

we end up capturing 239,007 streams from 53,111 samples.

• Benign Traffic: We construct benign traffic from two data sources,

one is real traffic captured in a campus network and the other is the

traffic generated by benign samples running in the sandbox. Most

samples in the benign dataset are collected from a large campus

network with nearly 10,000 active hosts. We passively monitor all

inbound and outbound encrypted traffic at different time points for

5 consecutive months from January 2021 to April 2021 and save

the raw pcap packets. Due to the possibility of malware-infected

hosts in the campus network, we cannot directly use all the traffic

as benign traffic. We chose Alexa ranking as a filtering criterion,

keeping domains with the top 1 million traffic rankings. The reason

for this choice is that websites with more than 1 million rankings on

Alexa can be considered as “Long Tail”, thus this filtering guarantees

the diversity of the sample and also ensures the traffic is benign to

a certain extent. Since the crawled traffic may contain some private

information, we also need to anonymize the IPs. The same host is

treated as the same fake IP to ensure the integrity of the network

relationship. On the other hand, in order to avoid large bias in the

domain distribution between benign and malicious traffic due to the

different collection methods, we also collect the traffic generated by

benign samples running in the same sandbox environment. Such

samples are partly collected from the top 100 of the Microsoft

Store’s top free list and partly collected from the programs flagged

as benign by the malware analysis site. Among all the domains

of the traffic generated by the benign samples, 24% are not in the

Alexa Top 1 million rankings. We believe this mitigates the bias

associated with filtering traffic while keeping the traffic benign.

Finally, we capture 4,940,593 streams in the existing network by

53,281 hosts and 22,493 streams in the sandbox using 2,455 samples.

Dataset statement. In EncMal2021, the malicious samples are run

in sandboxes, which makes the distribution of malicious traffic

not exactly consistent with the actual situation. However, we com-

pensate for this by enriching the malware types and the sandbox

environment, so that the constructed dataset is comprehensive as

possible.

Train-test Split. For the first task, i.e., malware detection, we

perform different train-test split strategies on the two datasets, for

the capacities of these datasets are different.



RAID 2022, October 26–28, 2022, Limassol, Cyprus Fu and Liu, et al.

Table 2: Detection Performance of ST-Graph and Baselines. In EncMal2021, use joint testing set as the test set.

Dataset Method

Malware Detection Malware Family
Performance Time Taken Performance Time Taken

Precision(%) Recall(%) FPR(%) Train(s) Test(s) Precision(%) Recall(%) FPR(%) Train(s) Test(s)

EncMal2021
ETA 99.1726 99.3013 0.1915 729.26 138.24 79.9473 76.5882 1.2410 306.49 76.66

FS-Net 99.3515 92.5990 0.2565 45324.10 17741.15 73.0697 72.6062 1.5218 41048.30 1890.69

ST-Graph 99.9805 99.9221 0.0045 5956.45 150.31 93.3669 91.2105 0.4016 1489.41 127.14

AndMal2019
ETA 77.8451 74.7129 19.0409 65.31 22.48 28.8382 27.5170 1.8134 139.05 39.19

FS-Net 72.8997 72.5344 21.4712 23275.86 5112.93 19.4906 16.7309 2.0863 23055.60 774.21

ST-Graph 99.2973 99.6444 0.0170 2113.13 27.19 53.7568 53.4014 1.0180 520.36 66.85
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Figure 5: Comparison between joint testing set and disjoint testing set on EncMal2021.

• For EncMal2021: We divide the collected dataset into three parts:

1) training set, 2) joint testing set and 3) disjoint testing set, with a ratio
of 6:2:2. Here, the joint testing set shares the same distribution of

malware families with the training set; while the malware families

in the disjoint testing set do not intersect with those in the training

set. And we allocate benign traffic randomly and keep the ratio of

benign traffic to malicious traffic at 10:1.

• For AndMal2019: We use 60% samples for training and 40% for

testing. Here, we do not further divide the testing set into a joint

or a disjoint one since AndMal2019 only includes a limited number

of malicious families.

As for the second task, i.e., malware family classification, we use

8:2 as the ratio of train-test split for both two datasets. The labels

for this task are the name of families in Table 1.

Ethical Concerns. We also consider ethical concerns when col-

lecting our dataset. As aforementioned, a portion of our benign

traffic comes from border traffic on the real campus network. To

avoid burdening normal network access, we limited our collection

to passive listening. To protect privacy, we only saved TLS traffic

when capturing traffic and anonymized the address of the commu-

nication. In the detection stages, we focus on the destination of

the traffic (domains) and do not look into the payload of any TLS

traffic. Also, the traffic is stored in the physical servers to which

only privileged administrators have access.

6.3 Detection Performance
We compare ST-Graph with other baselines on EncMal2021 and

AndMal2019, respectively.
6.3.1 Evaluation on EncMal2021. We use EncMal2021 to verify the
model has good malware detection abilities in a large-scale dataset,

i.e. it can achieve good binary and multi-classification results.

Malware Detection. The purpose of this experiment is to evalu-

ate the detection effectiveness of ST-Graph and to test whether it

can identify unknown malware families, i.e., generalization. Gen-

eralization is to describe a model’s ability to react to new data.

In malicious traffic detection, it is important to know how well a

trained model will generalize to unseen data. We train all models

using training set and test them with joint testing set and disjoint
testing set, respectively.

The results of the joint testing set are shown in Table 2 (1st row).

From the results, we observe ST-Graph approaches with high pre-

cision and recall over of 99.99%, and the FPR is even two orders of

magnitude lower than the other two models. In terms of computa-

tion cost, compared with ETA, a simple feature engineering-based

model, ST-Graph takes more time for training and testing, while

this is much less than the deep learning-based model FS-Net.

Figures 5a, 5b and 5c show the detection results of the three

models for the disjoint testing set, compared with the results on

the joint testing set. In terms of precision, only our model does not

degrade on unseen samples. This is due to the fact that although its

recall for malicious communication traffic drops a little, it avoids

more false positives. As for the recall score, each model decreases to

some extent, while our model is still the most effective one. FS-Net

can detect most malware traffic, but it also introduces a high level

of false positives even when the distribution of benign traffic data

changes slightly. This may be due to its overfitting, where small

changes can lead to changes in the results of the model, making it

unrealistic to be applied to security analysis in practice.

Malware Family Classification. We use only malicious data for

multi-classification to understand ST-Graph’s effectiveness for ma-

licious family classification. This task is valuable because when

malicious communications are detected, we need to analyse their

binaries to confirm the alarm, while the family labels of the alarms

offered by the detection model itself greatly reduce analysis time.
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Figure 6: Malware family classification result of ST-Graph.

Figure 6 shows the normalized confusion matrix of multi-class

classification for ST-Graph. And the results of the other two models

show in Appendix D. We observe that ETAmodel and FS-Net model

can only identify a small part of malware families while having poor

performance in the majority of them. For example, ETA performs a

good classification for RelevantKnowledge. After analyzing the raw

traffic data generated by all samples in RelevantKnowledge family,

we found that all samples have the same cipher suites, signature

algorithms and other characteristics in the TLS handshake phase.

These features also differ from the traffic generated by the samples

in other families, forming a unique fingerprint. Beyond that, the

distinction between malware may not be obvious, and the features

extracted by humans are designed to detect anomalies rather than

to distinguish between malware families. On the other hand, FS-Net

prefers to group malware into large malware families because large

malware families have a greater variety of packet length sequences.

Hence, it is more difficult for FS-Net to distinguish betweenmalware

with similar packet length sequences.

Our model can achieve 93% precision in classifying malware fam-

ilies. Figure 11 (in Appendix D) visualizes the results of embedding

the traffic graphs into six of these families. It shows that malware

families can be distinguished based on the clustering results, and

each family can form a large cluster. In addition to some intuitive

TLS handshake features, our model can capture these same-family

network relationships and so achieve better classification results.

However, our model still cannot classify malware families com-

pletely correctly. On the one hand, this is because malware families

are classified by security analysis tools based on the software bi-

nary, and the labels themselves may not be completely accurate;

on the other hand, there is still a portion of malware that may

not present complete communication in the sandbox. These two

reasons can cause our model to misclassify malware that is not

well differentiated. In general, our model can perform fine-grained

classification.

6.3.2 Evaluation on AndMal2019. We also test our model on a pub-

licly available dataset to verify that it is applicable to a wide range

of data with good detection results.

Malware Detection. We first evaluate the detection effectiveness

on this dataset, i.e. the binary classification performance. Table

2 (2nd row) illustrates the results and Figure 7 shows the feature

(a) ETA (b) ST-Graph

Figure 7: Visual distinction of features where red dots are
malware.

vector visualization of the ETA and ST-Graph. The figure clearly

shows that our approach enables a greater aggregation of malware

compared to ETA, which enables a better classification result.

Malware Family Classification. The results in Table 2 show that

it is possible to detect malware using only network traffic, but

single-stream methods are not sufficient to characterize the mal-

ware families. Our approach makes it easier to find correlations

between malware. By combining the spatial-temporal character-

istics of hosts accessing the network, our detection results can be

improved considerably.

6.4 Generalization of ST-Graph
In addition to examining the model’s generalization to new infec-

tions (§6.3.1), we also conduct ablation studies to explore the role

of stream attributes and spatio-temporal embeddings.

6.4.1 Features. We reduce the variety of features of edges to con-

firm that ST-Graph can detect malware in less informative and

more critical situations. TLS 1.3 [52] has been standardized in 2018

and the adoption rate reaches 48% on major websites by January

2021 [27, 33]. The main change in this version is it enhances secu-

rity by also encrypting the handshake process, while this results in

less information being available in ClientHello. And the proposed

Encrypted-SNI (ESNI) extension will prevent others from fetching

the server name [6, 14]. This directly affects the acquisition of TLS

handshake features and domain features for Spatio-temporal Graph.

Even so, our method still works under the stringent conditions of

TLS 1.3 and remains efficient and effective. We run ST-Graph on

EncMal2021 without stream attributes that are blocked by TLS 1.3,

and the results are shown in Table 3 (2nd row), where the stream

attributes are removed one by one from top to bottom.

According to the results, we conclude that as the feature types

are reduced, there is a slight weakening in the precision and a slight

increase in the FPR of our method. Without using any stream fea-

tures, ST-Graph is still able to achieve satisfactory results and even

causes a lower FPR compared to baseline models using all stream

attributes (See Table 2). This suggests that the spatio-temporal fea-

tures extracted by our method play a decisive role. Therefore, our

approach is still competitive in detecting malicious traffic after the

full deployment of TLS 1.3.

6.4.2 Embedding. We modify the graph embedding algorithm in

Graph Representor to standard techniques (such as DeepWalk [49]

and node2vec [22]), leaving the other modules unchanged for test-

ing. This experiment is also tested on EncMal2021 and the results

are recorded in Table 3 (3rd row). The results show that our system
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has good detection and generalisation capabilities and that our

graph embedding algorithm does perform better in our scenario

compared to other graph embedding algorithms.

Table 3: Ablation study’s results of ST-Graph.

Settings Precision(%) Recall(%) FPR(%)
Original model 99.9805 99.9221 0.0045

Features
No domain feat. 99.9784 99.8983 0.005

No handshake feat. 99.8522 99.5578 0.0161

No statistical feat. 99.5848 99.0915 0.0955

Embedding DeepWalk 99.7376 99.4148 0.0184

node2vec 99.8891 99.5947 0.0121

6.5 Robustness of ST-Graph
We then design experiments to analyse the robustness of ST-Graph

about noise labels and the sensitivity to parameters of ST-Graph.

6.5.1 Noise Labels. We evaluate how noisy data affect the proposed

model in this experiment. This is worth concerning for samples

running in a sandbox may not produce truly malicious behaviour

in a short period of time, while such behaviours are still labelled as

malicious in our dataset as long as they are generated by malware.

To explore the impact of this problem, we randomly select a portion

of benign hosts and mark them as malicious ones and investigate

whether this changes the decision of the model.
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Figure 8: Detection performance with noise labels.

In the experiment, the ratio of benign to malicious hosts is 10:1.

Figure 8 shows the relationship between the proportion of benign

hosts mislabeled as malicious ones and the detection effectiveness.

The solid line represents the precision of the detection, while the

dotted line is the FPR. From the results, we observe that ST-Graph

and EAT show better robustness than FS-Net. More specifically,

with 15% mislabelling, ST-Graph still achieves 97% precision and

lower than 1% FPR. We observe that labelling benign hosts as mali-

cious does not change the detection rate of truly malicious traffic.

Even if the samples do not generate malicious traffic when running

in the sandbox and are consequently mislabeled, the impact on the

model prediction is not serious by only introducing a small number

of false positives.

6.5.2 Parameter Sensitivity. We evaluate ST-Graph under different

parameter settings. Specifically, we keep all parameters at their

default values and adjust the values of three parameters 𝐷ℎ (i.e.,

dimension of host representation), 𝑃𝐿 (i.e., length of random walk)

and 𝑃𝑁 (i.e., times of random walk starting from each edge) in turn,

respectively. The experimental results are shown in Figure 12 in

Appendix D. The results show that changing the parameters within

a certain range does not have a significant impact on the detection

Table 4: Precision(%) of Real-world evaluation results.

Stage ETA FS-Net ST-Graph
Campus-04/15/2021 8.0 4.0 86.0

Campus-02/25/2022 6.0 2.0 64.0

Enterprise-04/15/2021 1.0 0.5 80.0

Enterprise-02/25/2022 0.8 0.5 68.0

performance of the model. The system is able to consistently main-

tain a high detection accuracy and a low false alarm rate. For the

parameters 𝑃𝑁 , the detection performance tends to get better and

then worse as the number of random walk paths per edge increases

and the number of contexts per edge increases.

7 REAL-WORLD EVALUATION
To assess the performance of ST-Graph more comprehensively,

we deploy it in two real-world scenarios, i.e., a campus and an

enterprise gateway, for almost a year-long (from April 2021 to

April 2022) operation and evaluation. These two network scenarios

both have thousands of active users inside. Due to the significant

number of users, the network throughput is large enough to prove

the efficiency of ST-Graph, reaching the traffic bandwidth of 3.6

Gbps on the campus and 1.7 Gbps in the enterprise. Due to its best

performance, we deploy the model trained in §6.3.1 in this real-

world evaluation and compare its performance to existing detection

systems (ETA [2] and FS-Net [37]).

7.1 Real-word Result
Manual Analysis of Precision. To evaluate the precision of

alarms, we operate a manual analysis. It is impossible to manu-

ally analyse all alarms, with nearly tens of thousands of alerts per

day from these 3 models. As such, we randomly select 50 alarms

for each model and analyse them manually by an expert researcher,

with the help of information from threat intelligence [56]. First,

we judge an alert to be correct when an identifier (domain or IP

address) of the destination server is flagged malicious by threat in-

telligence. Then, for alarms which threat intelligence cannot cover,

we manually visit this destination server and judge with response

contents. If the response content compared to the contextual traffic

information is abnormal, e.g., response is a phishing website, we

consider this alarm is correct. To notice, if there is no correct alarm

in these 50 samples, we resample 50 alarms from unsampled data

space until we find at least one correct alarm, and the precision rate

is calculated on all sampled alarms. Due to the random nature of

sampling, we believe that our results on the sampled dataset can

be representative of the global results.

Results of Campus. To illustrate the variation in detection per-

formance over time, we choose results for the start date and end

date to analyse and compare, which are shown in Table 4. At the

start (April 2021), ST-Graph had the lowest average daily alarm

rate of 0.237% compared to the other two detection systems (3.034%

for ETA and 3.665% for FS-Net). From the precision of alarms by

manual analysis on 50 random sampled alarms in Table 4, we find

that the precision of ST-Graph(86%) significantly surpasses the

other two detection systems. As a result, ST-Graph is accurate and

meanwhile with a low false positive, which can significantly reduce

the cost of manual auditing. In addition, ST-Graph even can detect

a large number of false negatives that cannot be detected by other
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Figure 9: Activities of Ewind.

two detection models. In order to evaluate the ageing issue over

time, we compare the results of these 3 models after nearly one

year (February 2022). Although there is a slight degradation in the

performance of ST-Graph over time, it is still far superior to the

other two models.

Results of Enterprise. As the training set for the detection model

comes from the campus, the distribution is different from that of

the enterprise network. Affected by the inconsistent distribution of

training set, the average daily alarm rate for all models is higher

than the results on campus. However, ST-Graph still has the lowest

alarm rate at 0.249%, compared to 22.313% for ETA and 26.482% for

FS-Net. Similar to the results of campus, ST-Graph achieves the

highest precision and its performance is less affected by the time

ageing issue.

It’s worth noting that our detection is efficient in both scenarios.

In enterprise, ST-Graph only costs 160 seconds for 5-minute traffic

with 1.7 Gbps bandwidth. Even in the more complex network of

campus, ST-Graph still cost less time, with 200 seconds for 5-minute

traffic with 3.6 Gbps bandwidth. Overall, our model is effective and

efficient in detecting malware-infected hosts, subject only to slight

time ageing issues.

7.2 Case Studies
As mentioned before, ST-Graph could detect false negatives from

other detection models, i.e., malicious behaviours that are not de-

tected by other models. To understand the differences in perfor-

mance of different detection models for these “unknown” malware,

we analyse two representative cases: EWind and Miner.
EWind. As shown in Figure 9a, Ewind is a sophisticated, long-

standing class of adware [62], profiting through displaying adver-

tisements on the victim’s device. More seriously, Ewind also in-

cludes functionality such as collecting device data and forwarding

SMS messages to attackers, which poses a serious security risk.

From the results of enterprise, we identify a host infected with

malware belonging to a variant of the Ewind [70] family, without

being detected by the other two detection models. As we cannot

access the source code of Ewind, we only analyse the traffic be-

haviour of these infected hosts. By extracting the connection list of

this infected host, we depict the infection procedure of Ewind in

Figure 9b. First, it visited a free software download site, which is

peculated be the attack phase. Afterwards, we observe a series of
access requests to multiple websites at very short intervals (almost

simultaneously). By manually checking these websites, we find
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Figure 10: Statistical information on mining traffic.

that most of these websites are advertising websites (blue circles),

while two websites are benign websites with promotional content

(white circles). Therefore, we think that the connection sequence

is the root cause for the detection of ST-Graph, which reflects

the whole procedure of this malware. Apart from the anomalous

observation of the connection relationship, this malware didn’t ex-

hibit any other malicious features. Specifically, Ewind works on the

Android platform that uses a system interface to encrypt traffic [4].

Therefore, the encryption-related information in TLS is not differ-

ent from benign applications, which leads to the failure of ETA, the

TLS-information-based detection system. Besides, in the control

phases, Ewind has no subsequent interaction after TLS handshake.

As such, FS-Net, based on packet-based side-channel information,

has no capability to detect this malware.

Miner.Malicious coin miners are an emerging attack since 2018,

whose activity is similar to ransomware [43]. By unauthorized

use of victim’s device for cryptomining, it can consume valuable

computing resources, which poses new threats to the Internet.

From the results of campus, we detect a host infected by a ma-

licious miner. Without SNI or any other domain information, this

host only connects one target server only with IP address while

with hundreds of connections. Based on the response by manually

connecting to this IP address, we verify that this IP address hosts

an online mining pool. By analysis of the communication traffic

between this host and server, we find highly regular activities, es-

pecially side-channel temporal features. As shown in Figure 10, the

average length of streams between this host and server and the time

interval between each connection are regular and within a fixed

range. From this regular behaviour, we speculate that this infected

host sends “heartbeat” messages to indicate its alive status and

mining results to mining pool (control server) regularly. Although

the connection sequence is not very informative, ST-Graph is still

able to detect this kind of malware based on this regular activity.

From the analysis of these “unknown” malware, we have further

proven the effectiveness of ST-Graph.

8 DISCUSSION
In this section, we discuss the defence ability of ST-Graph against

existing attacks and the limitations of ST-Graph.

8.1 Defence Ability against Attacks
Several existing works have proposed methodologies to mislead

traffic detection systems, including disguising attacks and obfusca-
tion attacks.1 We have already discussed in §6.4 that the extracted

1
In this work, we don’t compare attacks target to learning-based models [5, 64].
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spatio-temporal features in our approach play a decisive role in en-

hancing the model’s generalizability. On this basis, we next discuss

the impact of each attack on ST-Graph.

Disguising Attack. Goal of this attack is to disguise malicious traf-

fic as benign applications. Frolov et al. proposed a tool to modify

TLS information to mimic other popular TLS implementations by

changing the fingerprints extracted from ClientHello and Server-

Hello [17]. However, this attack only modifies the TLS-stream in-

formation without changing the network connection relationships.

Therefore, ST-Graph can still detect infected hosts even with this

kind of attack.

Obfuscation Attack. This attack is more discreet, which tends to

confuse side-channel information-based detection systems. Wang

et al. [65] change the timestamp, direction and packet size of pack-

ets to confuse detection based on packet length and time interval.

Similarly, even changing the side-channel information, ST-Graph

retains the connection relationships, which allows it to still effec-

tively detect. Since obfuscation attacks will cause a highly dispersed

distribution of packet lengths and time intervals, which is reflected

in higher entropy. As such, it’s simple to defend this attack, i.e.,

calculating the entropy of side-channel information.

To conclude, existing attacks have a limited impact on ST-Graph.

8.2 Limitations
Scale of network. We acknowledge that the scale of internal net-

work has an impact on ST-Graph. The increase of internal hosts

will cause more nodes and edges in our graph structure. A larger

number of edges in the graph brings a heavier time cost for the de-

tection, and therefore an infinite number of hosts cannot be handled

at the gateway. However, our real-world evaluation is conducted

on two large representative networks, with bandwidth up to 3.6

Gbps and covering over 10,000 hosts. This huge-scale experiment

could prove the efficiency of ST-Graph in reality.

In future work, we would explore more efficient traffic feature

representation methods and ease the practical deployment limi-

tations by deploying clusters or separate inspection by network

segment for large enterprise network environments with high band-

width. In addition, the features we used rely on the TLS protocol.

Although the model can still achieve 99.85% precision (Table 3) after

removing protocol-related features, it is still necessary to explore

the detection methods for generic encrypted traffic in the future.

9 RELATEDWORK
Traditional network-based malware detection methods such as

DPI [47, 54] and HTTP-based methods [41, 45], perform keyword

matching on the plain-text payload of each packet. However, traffic

encryption makes these methods no longer effective. Besides, lim-

ited available information under encryption makes network-based

detection more challenging. We divide existing encrypted-network-

based detection methods into single-stream-based detection and

context-based detection.
Single-stream-based detection. Single-stream-based detection

strives to dig any available plain-text information for detection in

encrypted traffic. Two main features are utilized by single-stream-

based detection: features of TLS stream and features of side-channel.

• Features of TLS streams utilize the information in the TLS Hand-

shake process, which is the only plain-text process of TLS interac-

tions. Anderson et al. extract information as representative features

for detection, including TLS version, the cipher suites provided by

the client, the TLS extensions used, the server certificate, and the

result of negotiation between the two parties [2, 3]. Althouse et al.
first stitched information from TLS handshake to compute JA3/JA3S

fingerprints and detect malware by matching the client/server fin-

gerprints [1]. However, methods with only these features will be

ineffective under TLS 1.3, with fewer plain-text available informa-

tion for detection.

• Features of side-channel exploits information, such as packet

length, packet interval time and packet length frequency. For exam-

ple, several works utilized packet length statistics information to

detect malware at the TCP/IP layer [19, 60, 67]. Furthermore, Liao

et al. utilized deep learning techniques to improve the performance

of the detection models based on packet length sequences.

Above methods usually consider a single feature, which is not

robust and can be easily escaped by using evasion strategies.

Context-based detection. Encryption results in limited available

plain-text information for TCP connections, context-based detec-

tion methods try to use information from multiple protocols [3, 20]

or multi-stream connections to extend the perspective. In fact, in-

formation from DNS could help to construct the relation graph of

multiple malware servers [35, 44, 50]. To notice, Oprea et al. detect
malware and APT infections within an organization [46], while

their method only works on available seeds of known malware.

Note that relations between multiple malware and hosts may

change over time, so capturing the dynamic changes is essential in

the detection. However, previous graph-based methods are mainly

based on static relationship graphs and usually ignore the temporal

characteristics, which limits the effectiveness of detection with less

information. In our work, we propose ST-Graphto detect malicious

traffics based on a spatial-temporal graph.

10 CONCLUSION
In this paper, we propose ST-Graph, an encrypted malicious traffic

detection system equipped with a well-designed, novel graph repre-

sentation learning algorithm. By exploring additional, informative

network attributes and effectively integrating multiple features, ST-

Graph achieves high detection accuracy with a significantly lower

false alarm rate and tolerable computational complexity. Experi-

mental results on both self-collected dataset and benchmark dataset

demonstrate the effectiveness and the efficiency of ST-Graph, com-

pared with state-of-the-art malware traffic detection systems. In

addition, ST-Graph shows good performance in both generalization

and robustness perspectives and reveals outstanding efficiency by

real-world deployment.
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A MACHINE LEARNING ALGORITHMS
We compared seven common algorithms: Logistic Regression, Sup-

port Vector Machine (SVM), Naive Bayes, Artificial Neural Network

(ANN), k-nearest neighbours (k-NN), Decision Tree and Random

Forest ensemble. We used an implementation of Scikit-learn for all

algorithms except ANN, which uses Keras. All also used the default

hyperparameters. The experimental results are shown in Table 5.

Table 5: Classification Result of 7 algorithms

Precision(%) Recall(%) FPR(%)
Logistic Regression 97.8118 98.0980 0.2417

SVM 97.4046 93.3431 0.2740

Naive Bayes 92.7736 98.6101 0.8461

ANN 95.9901 98.9759 0.1653

k-NN 99.8524 98.9759 0.0161

Decision Tree 99.3426 99.4879 0.0725

Random Forest 99.9805 99.9221 0.0045

B PERFORMANCE METRICS
We define True Positive (TP) as malicious connections predicted as

malicious and False Positive (FP) as benign connections predicted

as malicious. True Negative (TN) represents benign connections

classified correctly and False Negative (FN) represents malicious

connections classified incorrectly. We use the following metrics to

evaluate the detection performance: (i) precision, (ii) recall and (iii)

false-positive rates (FPR).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 +𝑇𝑁

C SAMPLES FOR MANUAL ANALYSIS
Table 6 presents information on the 30 samples analysed manually.

Table 6: Families and Md5 of Malware Samples.

Family Related md5

Adware

ab775c62c8d03b33f9d9b60e013d54f5

3eeace60ad9f357dc8b77981465381c3

3185657ca1707f2364f34fea46afc455

75e3d279cc20419f2af57975f755614c

04436941856e5a8c3296b55292c47636

Wacatac

fc92be6f976b598cf65a241c8520cfd6

f18ac8264e592a4949c5fe09979234be

e8766491e8c8a9fc79e86197b1a55a76

d5bea7ed4ffc27366e218a99d5709987

fe3bea4366ecc34ddbf90291762cba88

d63d7bceed0da682db6170c24663b3b0

df5ed0925bfb4e141a134bfdf4b2e0ce

d32e7100988f924a0070418051de053f

Minerd

d31ca0d08a4bc600c51ecd6e891551eb

331dfc88f7d056b2667875199eb2d504

CobaltStrike

332265a774e2ad113cbf4d05189d2ee0

363eddcc28509a08c039833a9b6e2a04

79a4c854d00928024f9ce3020a041451

Flystudio 67b4843d49d60e16372160cc10f80cf8

gamhak c6752ffeb1ebc6bba468a71c36e69c85

krypyik

01372c76417280c2c7a524edd268d5a0

ceb684549a97dae140df9e4cef10c308

hoax 464852e25233ece2e3ed769e727f3ef3

Rbot e90fb38bd6c50f517d6d1fc00b445f91

avaddoncrypt 33874816e3eb31b874e1301fcf73bb72

lockscreen 4cf1bf8ebf10d596f7ecbb1c24258eef

graftor 71fb3ed4bf17e328c045a062fbf0895e

csdi

19435957f4a3d1380bfcd4c087e40a93

cc07157af9a75f492748baed0d22a9fe

NetWorm 97acceb1b93ace58c250901ebd55aadd

D EVALUATION RESULTS
Figure 11 visualizes the results of embedding the traffic graphs into

six of these families, Figure 12 shows the experiment results of

parameter sensitivity, and Figure 13 shows malware family classifi-

cation results of ETA and FS-Net in EncMal2021.

Generickdz
Minerd
RelevantKnowledge
Sality
Brocoiner
Installcore

Figure 11: Visualization of the 6 malware families.
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(a) Dimensionality of host vectors 𝐷ℎ
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(b) Random walk path length 𝑃𝐿
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Figure 12: Parameter sensitivity results.

(a) Results of ETA. (b) Results of FS-Net.

Figure 13: Malware family classification result of ETA and FS-Net.

E THE STREAM ATTRIBUTES
Table 7 shows the single-stream attributes used in our model (See

§5) and their descriptions.

Table 7: The Stream Attributes.

Attribute Type Attribute Description

Domain features

Domain Length Total number of characters in the domain.

Domain Level Level of domain. Sub, second-level or top-level.

Punctuation/Upperletter/

Lowerletter/Digit Ratio

The proportion of different character types to all characters.

Vowel/Consonant Ratio The proportion of vowel/consonant letters to all letters.

TLS handshake features

Client/Server TLS version The TLS version selected by the client and server.

Number of Client Ciphersuites The number of the offered cipher suites by the client.

Client Ciphersuite 𝑥 The 𝑥th in the list of cipher suites provided (𝑥 = 1, ..., 10).

Server Chosen Ciphersuite The cipher suite chosen by the server during the connection.

Client/Server Compression Method The compression method selected by the client and server.

Number of Client Extensions The number of the client extensions.

Number of Signature Algorithms The number of the signature algorithms offered by client.

Signature Algorithm 𝑥 The 𝑥th in the list of signature algorithms provided (𝑥 = 1, ..., 4).

Number of ec Point Formats The number of point formats offered by the client.

Number of Elliptic Curve The number of elliptic curves offered by the client.

Statistical features

TLS Packet Length 𝑥 Length of the 𝑥th packet in the stream (𝑥 = 1, ..., 25).

TLS Time Interval 𝑥 The 𝑥th time interval in the stream (𝑥 = 1, ..., 25).

Number of Packets The number of the total packets in the stream.

Max/Min/Average Packet Length The max/min/average length of total packets in the stream.
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